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R O L E  OF  R H E O L O G Y  IN T H E  E X T E N S I O N  O F  

P O L Y M E R  M E L T S  BY A C O N S T A N T  F O R C E  

A.  N. P r o k u n i n  a n d  N. G. P r o s k u r n i n a  UDC 532.5:532.135 

The uniform extension of an elast ic  liquid by a constant force  is exper imenta l ly  investigated, 
and the exper iment  is compared with theory.  

In [1] a sys tem of equations with four rheological  constants was wri t ten  to desc r ibe  any noninert ial  uni- 
form extension.* These  equations were  as follows 

1 d__~ d- (L-k 1)(La-- 1) exp(--L) = F(x), 
~, dx 6Z,2 

L = ~ (X - -  1) z (~ ~- 4L ~- 1), (v = t/0; / '  = u0), (1) 
2L 9. 

~'O (r = - -  = (l--s)  (L2--~ -i) + 3srexp (L). 

These  equations wore  der ived using the c lass ica l  potential  of the grid theory  of high elast ici ty.  

In the extension of a sample by a constant  fo rce  F,  one end is r igidly fixed, and the other  moves under 
the action of F (a d iagram is shown in Fig. 1). In this case,  the dimensionless  s t r e s s  is 

( r = %  P._L, % _  OF . (2) 

P rlPo 
The express ion  for the deformat ion ra te  under tension is F = (1/7) (dl /dr)  [3]. Using the incompress ibi l i ty  
conditions for the liquid, P010 = pI, it may be wri t ten  in the form 

r : ~  1 dp (3) 
p dr 

Differentiating Eq. (2) with r e spec t  to ~ and using Eq. (3), the following resu l t  is obtained 

*Surface tension was neglected. 
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1 da 

Taking account  of  Eq. (4), the second re la t ion  in Eq. (1) takes the form 

d___~dz = ~ r eXP3s ( ~  L) [ (1 - -  s) s _s 1 

It a l so  fo l lows  from Eq. (1) that 

(4) 

] .  (5) 

d~ = _ ~ e x p ( ~ L ) { ( g q - 1 ) ( s  q_ 1 [ ~,3~1 ]} 
d---~ " 6~ 2 - ~ s  (] - -  s) )~ a . (6) 

Thus,  in consider ing extension by a constant fo rce  F, it is neces sa ry  to solve a sys tem of two equa-  
t ions - Eqs. (5) and (6) - under the condition that k = 1 and a = a0 when T = 0. 

Dividing Eq. (5) by Eq. (6), the following resu l t  is obtained 

~__ da I ( I - - s )  )~3__ I -e + (I --s) - -  o (7) 
a d~ 3s X 6~ ~ ~ 

Investigation of the phase pic ture  for Eq. (7) shows that the solution ~(2`) r i s e s  monotonically.  

It may  be shown that at large 2  ̀ (at large  7) the solution shrinks to the dependence 

a = ~2. (8) 

Taking into account that if(2`) is monotonic, Eq. (7) may be written in the form 

1 [(1 - -  s) - -  a/Lz] 
~, da 3s -]- 0 (~-t). (9) 
cr dL 1 - ~ +  _ _  [(l - s) - -  olL'] 

It follows f rom the second re la t ion in Eq. (1) that the growth in r is no s lower than 2, 2. Suppose that 
grows m or e  rapidly than 2`2. It then follows f rom Eq. (9) that, at large  2`, (2`/~) (da/dh) ~ 1 and a = CM 

which contradicts  the initial assumption. Thus, with increase  in X, all the solutions reduce  to a curve  ~ = 
C2  ̀2. It follows f rom Eq. (9) that C = 1. 

Taking account of Eq. (8), it follows f rom Eq. (6) that at large 2  ̀

drd~ _ ~86 exp ( - - - ~ ) .  (10) 

For  the case  /3 = 0 

3 ~* - = a. (11) 
C ~ x  

Note that 2̀  tends to infinity in a finite t ime in Eq. (11) because  a noninert ial  approximation is considered;  
however ,  in the region of X considered in the compar i son  with exper iment  below, dynamic t e rm s  a re  insignifi-  
cant, and the asymptote  in Eq. (11) is acceptable.  

As T -~ ~ (/3 ~ 0), 2̀ 2 ~ (2//3) In (/3T/6) f rom Eq. (10) ; a t  the same t ime,  the motion of the tes t  sample 
slows. 

In e x p e r i m e n t s  it is not the e las t ic  deformat ion k which is measured ,  but t he"e l a s t i c  recoi l"  a .  The r e -  
lat ion between these  two quanti t ies  [1] is as follows 

9--$ 
= 2 ~(I-s) s 

- -  ~ - -  - - ,  r  = I l l  r .  (12) 
2 ~ s  2 - - s  

It foUows f rom Eqs. (1) and (10) that, w h e n  X - -  ~ ,  r -~  ~ f f /~  = o and r -~ o if  13 ~ 0. 

According to [I], the ra te  of i r r e v e r s i b l e  deformat ion  is 

e p = F - -  dln-------~-a - - F [  1 -  ~ d ' r  . . . .  a dLd~ _]A- 

L dc~ (k + 1) (~3 _ i) exp (-- L). O-3) 
c~ d3, 6L 
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Fig. 1. Uniform extension by a constant 
force:  d iagram of extension apparatus;  
dependence of deformat ion e and elast ic  
reco i l  ~ on the t ime T. Points I-IV c o r -  
respond to e0 = 1.82, 6, 11.4, and 21.3. 

If fl = 0 and X-*w,  ( k / a )  ( d ~ / d x )  - - 2 ( 1 -  s ) / ( 2 - s ) ,  and e p ~  X2; if f l r  0 and X---~, e p - *  0, passing 
through a max imum.  

Now consider  the asymptotic  solution for smal l  t imes r .  Substituting into Eqs. (5) and (6) express ions  
for  the total deformat ion  e = 1//0, the elast ic  deformat ion X, and the s t r e s s  ~ = ~0e in the form of power 
se r i e s  in r ,  and taking into account that r = ( l / e )  (d e/dr) ,  it, is found that  for any ~0 

G 0 

It may  also be shown that when v < 3s/q0, where  ~0 >> max (3/2)  {(1 - s), s) ,  i r r eve r s ib l e  flow is slight, 
i .e . ,  e ~ X. If fl << 1 (for the given polymer  fl ~ 10 -~) 

1 d~ 1 dL 
P =  - -  �9 ; a = ~ o 3 , = 3 s - -  - - - ,  (14) 

Z dx Z d~ 

1 

1 ~  ~o T. 
3s 

The express ion  for e in Eq. (14) is the same  as the solution of  the problem on the extension of a New- 
tonian liquid (F = const)  of v iscos i ty  ~s, but in the given case  the deformat ion is a lmost  ent i re ly elast ic  (in a 
Newtonian liquid X= 1). 

By matching the asymptot ic  solutions obtained at la rge  and smal l  r ,  the constant  C in Eq. (11) may  be 
determined.  At the point of intersect ion of the two solutions, that is ,  ~ = ~0X and ~ = k 2 (for the case  /3 _ 10 -2, 
the solution for fl = 0 m a y b e  considered in the matching region), X = e0. The t ime T,  at  the matching point 
may then be determined f rom Eq. (14) 

~ , = - -  1 - - - -  . (15) 
O'o ~o 

Then, substituting X = o'0 into Eq. ( I I )  when r = "r,, the following resu l t  is obtained 

3 
C = T, -~.- (16) 

Note that in addition to the asymptot ic  solution of Eqs. (5) and (6), they were  also solved numerical ly  by 
the Runge--Kut~ method on a computer .  When the appropria te  constra ints  were  observed,  the resul ts  obtained 
by the two methods did not great ly  differ. The resu l t s  of the numer ica l  calculation a re  given below in the c o m -  
par i son  with experimental  data. 

The experiments  were  ca r r i ed  out, as in [1], a t  22~ with a mel t  of P-20 polyisobutylene of molecular  
m a s s  ~ 10 5. 
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Fig. 2. Dependence of the s t ress  or' on the 
elastic deformation G: a} dependence of 
the tensile s t ress  v '  (Pa) on ~. Points 
1-4 correspond to ~0 = 1.82, 6, 11.4, and 
21.3. The filled symbols show the enve- 
lopes for these dependences; b} the de-  
pendence of ~, on ~ for s t ress  relaxation 
after extension. Points 1 and 2 correspond 
to ~0 = 21.3 and e = 14, 5.8; points S and 
4 to ~0 = 11.4 and e = 14, 5.8; points 5 to 
~0 = 6 and e = 14; points 6 show the en- 
velope obtained for extension at  a constant 
deformation rate  r ;  points 7 and 8 c o r r e -  
spond to extension with constant deforma- 
tion rates  r = 200 and 24 and e = 5.8. 

A diagram of the apparatus used for extension by a constant force and for experiments on the s t ress  r e -  
laxation of cylindrical samples is shown in Fig. 1. The left-hand end of the sample 1 was fixed by means of 
the clamp (bush} 2 to the external  plate of the capacitative sensor 3 [4]. The right-hand end was fixed by 
means of another bush 4 to the float 5 on the surface of the water. The water was used to compensate the 
weight of the sample and to provide thermostat ic conditions. A thread 6 was attached to the float, ~ passed 
through the pulley 7; the load 8 was attached to its other end. Note that this extension system might lead to 
self-oscillation at high levels of sample extension (especially when the pulley is replaced by a cylinder over 
which the thread slides). Therefore,  in conditions where this might occur (when the samplewetght is much 
less thin1 the load weight}, the experiments were duplicated for ver t ical  extension with no pulley. 

For  the measurement  of s t ress  relmxation~ an obstruction was placed at the required distance; the ob- 
struction took the form of a Y piece in which the float lodged in the course of its motion, relaxation beginning 
thereaf ter .  The sample length remained unchanged in these conditions. In s t ress  relaxation (in ideal re laxa-  
tion the sample is motionless), the sample may move in the case in which nonuniformities have formed in the 
course of extension, and this sometimes leads to destruction of the sample. This is evidently because the non- 
uniformities produce in the sample points of different s t ress ,  whose relaxation over time is different. 

The uniformity of the samples was partially monitored by taking photographs at a f~xed point of the tes t  
sample (far from the clamp). 

The elastic deformation ~ = / / / r  was also m e a s u r e d ; / r  is the length to which a segment of the extended 
sample of length / tends after  the s t ress  is removed. To measure  ~, a s ~ i c i e n t l y  uniform part  of the sample 
was cut out using shears,  af ter  which the cut sample was reduced in the melt  for ~1 h [3]. 

In the experiments,  measurements were made of the tensile force F, the total deformation e = / / / 0  (the 
length / was fixed visually as the melt  moved along a scale), and the elastic recoi l  ~.  

The sca t te rof the  experimental data for  e _ 10 was no more  than ~10~o , but  increased dramatically for 
measurements  of e in the region where it is rapidly r ising (see Fig. 1). The points in the figures give the ex-  
perimental  resul ts  and the curves the theoretical  dependence. For the sake of subsequent comparison with 
theoret ical  resul ts ,  the experimental data a re  given in dimensionless form. 

The dependence of the total deformation e = l//0 and the elastic recoi l  ~ on the time r = t /0  (0 = 2" 
103 sec) is shown in Fig. 1 for different i~itial s t resses  ~0 = F~/~P0 (P0 is the cross-sect ional  area  before 
deformation}. In the range of e investigated, these dependences r i se  monotonically; the r i se  is more rapid for 
L~rger cr o. 

The dependence of the dimensional s t ress  ~' on the elastic recoi l  ~ is shown in Fig. 2. The open sym-  
bols in Fig. 2a correspond to resul ts  for or' (a} obtained for extension by different forces (initial s t resses  
~ ) .  These dependences a re  plotted from the experimental results  given in Fig. 1. It is evident from Fig. 2 
that the experimental  dependences r (~) converge with increase in c~. Comparison of results  for ~ ' (~ )  ob- 
tained in conditions of constant force (Fig. 2a} and constant deformation rate  [1] shows that at the points of in- 
tersect ion the deformation ra tes  a re  approximately the same. 
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Fig. 3. Dependence of ep (1) on the e las t ic  r e c o i l  ~ .  
Points 1--4 co r re spond  to o0 = 1.82, 6, 11.4, and 21.3. 
The filled symbols  show the envelope of the cu rves  for 
di f ferent  dependences ep(~). 

Fig. 4. Theore t i ca l  dependence of the to ta l  de fo rmat ion  
e (1), e las t ic  de fo rmat ion  X (2), and e las t ic  r eco i l  ~ (3) 
on the t ime  r .  The continuous cu rves  a r e  for  fi = 0 and 
the dashed curves  for  1 .72 .10-  3 

The filled symbols  in Fig. 2a show the dependence ~ , ( ~ )  (the envelope) obtained for  s t r e s s  relaxat ion.  
This  dependence was  obtained as  follows. In conditions of s t r e s s  re laxa t ion  (preceded by  extension of the s a m -  
p le ) ,  m e a s u r e m e n t s  were  made  not only of the s t r e s s  as  a function of t i m e  o '  ( t )  but a l so  of the e las t ic  r e co i l  

. The sample  was tmloaded at d i f ferent  t imes  t in the course  of s t r e s s  re laxat ion,  and the e las t ic  r eco i l  
was  m e a s u r e d ;  the dependence ~ ( t )  was  then constructed.  Using the dependences q ' ( t )  and ~ ( t )  in s t r e s s  
re laxa t ion  (not given in the p r e s en t  work  ), the re laxa t iona l  dependences ~ ' ( ~ )  shown by the points in Fig. 2b 
were  obtained. The points f rom which the re laxa t ion  p r o c e s s  began a r e  shown by  a r r o w s  in Fig. 2b. As is 
evident  f rom Fig. 2b, the re laxa t ion  dependences lie along a single curve ,  ff re laxa t ion  begins  f rom points l y -  
ing on this curve  (see  points 2, 4, 7, and 8, for  example) .  It  does not m a t t e r  in what conditions the points f rom 
which re laxa t ion  begins  (denoted by  ar rows)  we re  obtained. F o r  example ,  points 2 and 4 were  obtained in con-  
di t ions of constant  force  and 7 and 8 in conditions of constant  de format ion  ra te .  The  re laxa t ion  cu rves  ~ '  (~)  
m e r g e  in the envelope (6) obtained for re laxa t ion  following f rom extension at  constant  de format ion  r a t e  ( see  
[1] and points 6 in Fig. 2b). Thus,  the envelopes  for  these  two types  of extension a r e  the same.  

Note that  the dependences ~ '  (~)  obtained for  extension at constant  force  (the unfilled symbols  in Fig. 
2a) l ie to the left  of the envelope (as is also the case  for the dependences for extension a t  constant  de fo rmat ion  
r a t e  in [1]). 

Dependences e p ( ~ )  = F ( d / n ~ / d T )  for  extension with di f ferent  a0 a r e  shown in Fig. 3. The exper imen ta l  
dependences e ( r )  and ~ ( r )  (see  Fig. 1) were  used to cons t ruc t  e p ( ~ ) ;  i n t h i s  case ,  F = d i n e / d r .  T h e  d e -  
pendences e p ( ~ )  converge  with inc rease  in ~ .  It  should be  emphas ized  that  he re ,  as  for  o (~ ) ,  the envelope 
(see  the filled symbols)  is  the s ame  as  that  obtained for extension with constant  deformat ion  ra t e  F .  The p r o -  
cedure  for obtaining the envelope in any conditions of  extension is given in [1], together  with exper imen ta l  r e -  
sults  for the envelope in the case  of extension with F = const.  

At this point, the theore t ica l  and exper imen ta l  r e su l t s  may" be compared .  The calculat ions were  made  for 
the constants  de te rmined  in [1], with the following values:  v i scos i ty  ~ ~ 1.1.106 l~a �9 sec;  re laxa t ion  t ime ~ = 
2 �9 103 sec;  r a t io  of the r e t a rda t ion  t ime  to the re laxa t ion  t ime  s = 0.35. The continuous curves  in the f igures  
co r respond  to the case  fi = 0 and the dashed curves  to the case  fl = 1.72 �9 10-2. No dashed curves  appear  in 
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m o s t  of the f igures  because  the two va r i an t s  cons idered  did not differ  in the cor responding  regions.  

The theo re t i ca l  dependences of the total  de format ion  s and e las t ic  r eco i l  ~ on the t ime  r a r e  ca lcu -  
lated f rom Eqs.  (5), (6), and (12). For  v0 > 10 and s < 10, the theore t i ca l  cu rves  a r e  l i t t le d i f ferent  f rom the 
cor responding  solution of the p rob lem for a Newtonian liquid in Eq. (14) with v i scos i ty  Ws, although in the 
p r e s e n t  ca se  gigantic e las t ic  de format ions  accumula te  (see  Fig. 4). Note that  the theore t i ca l  curves  of s ( r )  
and ~(~)  for  /~ # 0 tu rn  downward a f te r  r i s ing  sharply ;  i nc rea se  in r is a s soc ia ted  with downturn at  s m a l l e r  
va lues  of ~. These  downturns a r e  not shown in Fig. 1, s ince,  e .g. ,  when ~0 = 21.3, the downturn in the cu rves  
of E(T) OCCurS at  s ~ 400 (see  Fig. 4). When /3 = 0 the cu rves  of ~(T)  and a(T) inc rease  without l imit.  

The theo re t i ca l  curves  of the extension ~ ' ( ~ )  shown in Fig. 2a  follow f rom Eq. (1), where  r is obtained 
f r o m  Eqs. (5) and (6) taking account of Eqs. (4) and (12). Note that  r  does  not depend on/~ (for any /~) .  
The analyt ic  exp re s s ion  for  the envelope is obtained f rom the exp re s s ion  for  ~ in Eq. (1) when F - 0 ,  with 
r ep laced  by ~ in Eq. (12). 

The va lues  of ep (Fig. 3) in extension a r e  calculated f rom Eq. (13). The analyt ic  express ion  for the en-  
ve lope  is obtained f rom Eq. (13) with r -= 0. Note that,  when/~ = 0, ep i nc rea se s  without l imi t  with r i s e  in ~ ; 
when # ~ 0, it has  a max imum.  It was  not poss ib le  to conf i rm the exis tence  of a m a x i m u m  on the cu rves  of 
ep exper imen ta l ly ,  because  of the difficulty of obtaining l a rge  values  of  ~ .  Such a m a x i m u m  was obtained in 
[5] for  low-dens i ty  polyethylene.  

It is a l so  in te res t ing  to c o m p a r e  the theore t i ca l  curves  for the to ta l  de format ion  s ( r ) ,  the e las t ic  de -  
fo rma t ion  X(~), and the e las t ic  r eco i l  ~ ( T )  shown in Fig. 4 for ~0 = 21.3. At smal l  T, ~ ~ ~ ,  i .e . ,  the s a m -  
ple med ium d e f o r m s  as  a solid nonlinear Voigt  body. Note that ,  in the reg ion  where  k ~ s the e las t ic  r eco i l  

is  cons iderably  l e s s  than s. The theore t ica l  curves  of s i r) ,  k(r), and a i r )  for/3 ~ 0 turn downward at l a rge  
�9 . The downturn on the theore t ica l  cu rves  of s for  # r 0 shown in Fig.  4 were  not exper imenta l ly  inves t i -  
gated. This  is  because  it  is v e r y  difficult to achieve values of s ~ 1,02 exper imenta l ly .  Curves  of s with a 
downturn a f te r  a sha rp  r i s e  w e r e  o b s e r v e d  in [6] for  c rys ta l l i z ing  polyisobutylene,  but at v i scos i t i e s  s eve ra l  
o r d e r s  of magni tude h igher  than were  used in the p r e sen t  work.  

NOTATION 

and ~ ,  two m e a s u r e s  of the longitudinal e las t ic  deformat ion;  F and ~ ,  d imens ion less  and d imens iona l  
de fo rma t ion  r a t e s ;  T and t ,  d imens ion less  and d imens iona l  t ime;  0, r e laxa t ion  t ime;  s,  ra t io  of the r e t a r d a -  
t ion t ime  to the re laxa t ion  t ime  (0 < s < 1) ; 77, init ial  (Newtonian viscosi ty)  ; ~, d imens ion less  coefficient  
cha r ac t e r i z i ng  the f lexibil i ty of the m a c r o m o l e c u l a r  chains  (0 _</3 <__ 1); ~ and ~ ' ,  d imens ion less  and a i m e n -  
s ional  s t r e s s  in the c r o s s  sec t ion  of the extended sample ;  F, t ens i l e fo ree ;  P0 and p, c r o s s - s e c t i o n a l  a r e a  of 
s ample  at  the onse t  of de fo rmat ion  ( r  = 0) and a f t e r  deformat ion  for  t ime  r ;  l, length of sample  a t t i m e  r ;  ~0 
and ~0, length of s ample  and s t r e s s  in it  a t  r = 0; g r ,  length to which a segment  of  the extended cyl indr ica l  
s amp le  of length ~ tends a f t e r  the r e m o v a l  of  the s t r e s s  as  ~ -~ oo; s to ta l  longitudinal deformat ion.  
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